This sample environmental issues research paper features: 6700 words (approx. 22 pages), an outline, and a bibliography with 39 sources. Browse other research paper examples for more inspiration. If you need a thorough research paper written according to all the academic standards, you can always turn to our experienced writers for help. This is how your paper can get an A! Feel free to contact our writing service for professional assistance. We offer high-quality assignments for reasonable rates.

Outline

  1. Introduction
  2. Cultural Beliefs and the Environment
  3. Theory and the Environment
    1. Social Construction and the Environment
    2. Social Construction and Social Movements
    3. Political Economy and the Environment
  4. Environmental Issues: Method and Application
  5. Risk Perception and Environmental Health
  6. Environmental Movements
    1. Mobilization Around Toxic Waste Sites: Love Canal
  7. Conclusion
  8. Bibliography

Introduction

Environmental issues can be discussed within a number of different contexts. For anthropology and sociology, culture and society become important factors in understanding environmental issues. By incorporating a perspective that includes environmental history, aspects of environmental change, dialogue and culture, and future concerns, a more complete understanding of the relationship between sociocultural actions and the natural environment can be developed. In an effort to understand the nature of environmental problems, one must develop an understanding of the cultural paradigms that guide human behavior and interaction with the natural environment. Many perspectives seek to explain this relationship. Social scientists look toward dialogue and cultural perspectives to trace the history of environmental concern.

Historically, humans have understood their role to be one of dominion over nature. This is explained in numerous classic works and referenced in many religious and spiritual texts as well (Bell, 2008; Dunlap & Mertig, 1992). Cultural paradigms exist that serve to guide our interactions with the environment. Most stem from the anthropocentric belief that the world is centered around people and that human society has the right to maintain dominion over nature. Structural beliefs provide the foundation of these understandings.

Cultural Beliefs and the Environment

The belief that a free market system provides the greatest good for the greatest number of people leads us to place economic decision-making processes in private hands. Frequently, private decisions have public consequences, but these public consequences are not accounted for in production costs or covered by market costs. Instead, the costs are passed on to consumers in the form of taxes and higher base prices for goods and services. Esteemed environmentalists Al Gore Jr. and Robert Kennedy Jr. have argued that if the external costs of production were assumed by manufacturers, then the ultimate benefit would be a system that accounted for waste created in the production process. This is evident in their research on global warming. Coal-fired power plants are promoted as one of the cheapest forms of creating energy. This is misleading, because the health effects of pollution caused by coal are not included in the costs of production. Others argue that those costs would have to be passed on to the consumer. However, they are passed on now in the way of pollution and medical expenses for illnesses associated with environmental contaminants. Coal is one of the biggest contributors to greenhouse gases, thus leading to the overall societal costs of global warming.

Another cultural belief is that the natural world is inexhaustible. Extraction of natural resources happens at an incredible rate without a consideration to limits. Society’s constant dependence on nonrenewable energy forces mining and the refining of coal and oil to keep up with these demands. Consumer goods are deliberately planned to become obsolete within a relatively short time, and consumers are pressured to buy replacements. This process has been conceptualized in research focused on the treadmill of production. Production and utility processes, using natural resources, dominate the modes of production. The reliance on the treadmill model provides perpetual extraction and production, increasing the fragility of the natural environment.

Another cultural value resides in a lasting faith in technology. Culturally, we believe that technology can meet any challenge. Humans are seen as ingenious creatures able to devise solutions for any problem. However, technology itself is not sufficiently controlled and can create more problems that contribute to environmental degradation. This can lead to a situation known as culture lag, used here to describe a situation in which technology has outpaced the cultural ability to respond to the consequences of using a given technology.

The philosophy of the growth ethic argues that growth equals progress. Successful cultures are often defined by their levels of progress. Urban sprawl exemplifies the connection between progress and environmental destruction. Urban ecologists argue urban sprawl follows the concentric circle urban planning mode of the early 20th century. Residents were encouraged to develop space for residential purposes further away from city centers. This was culturally promoted as prime real estate, and individuals continued to purchase land as a showing of class standing. Urban sprawl results in the loss of green and open space, increased use of natural resources, and more vehicle miles traveled as commuting distance continues to increase.

Materialism is a cultural value that also contributes to how environmental problems emerge. Americans tend to measure success in terms of the consumption of material things. Globally, the most valued nation is one that can command and use the largest fraction of the world’s resources. Currently, the United States supports 5% of the world’s population and uses 25% of the world’s natural resources. This is evidence that the cultural emphasis on the consumption of material goods is in direct correlation with natural resource use.

Two final cultural values that impact environmental practices are individualism and an anthropocentric worldview. Cultures that emphasize individual rights and personal achievements tend to have a greater environmental impact. We place benefits to the self over what is best for the collective. Subsequently, the anthropocentric worldview is centered around human beings, thus inferring that human begins are superior to other beings and have natural rights to use the environment to ensure the progress of human beings as a species.

Subsequently, these cultural beliefs form the principles that overwhelmingly guide cultural interactions with nature. Theoretically, they serve as paradigms that explain the emergence of environmental issues. The following section provides specific theoretical underpinnings of environmental issues.

Theory and the Environment

Theory addressing environmental issues has been situated in the social constructionist and political economy approaches. Within these approaches, attention has been paid to developments of subfields in social science research, such as social movements and the environment, environmental health, and environmental justice.

Social Construction and the Environment

Social constructionists focus on the construction of social problems and how this allows individuals to assign meaning and give importance to the social world. Sarbin and Kitsuse argued that “things are not given in the world, but constructed and negotiated by humans to make sense of the world” (1994, p. 3). When interests are at stake, claims are made around an activity in order to define the interests as problems. The process of claims making is more important than the task of assessing whether the claims are true (Hannigan, 1995).

Hannigan provides a three-step process for the construction of environmental problems: assembling, presenting, and contesting. He argues that each step develops the claimsmaking activities of environmental activists and antagonists. Environmental problems are different from other social problems, because claims are often based on physical, chemical, or biological scientific evidence (Hannigan, 1995). In nearly all cases of environmental problems, even though such problems are based on scientific evidence, the burden of proof falls on the claims-makers, the environmental actors.

When a claim about an environmental problem is presented, state and corporate actors emerge most often to challenge the validity of these problems. Although these actors are willing to construct the issue as a “problem,” support to alleviate the problem is often lacking. If it supports the alleviation of the problem, most probably through funding remedial efforts or research, the state or corporation is seen as taking responsibility for the problem. If the state is seen as responsible, its perceived legitimacy decreases, which may lead to decreased trust. On the other hand, if a problem is not acknowledged, then trust in government may also decrease, because the perception arises that the interests of the state are not the best for the people.

The power of individuals in roles and positions to define these claims is ultimately what allows problems to be defined as problems. Claims may be made by others not in a position of power, but they are often not seen as valid because of the lack of power associated with the role. Different claims of environmental problems then lead to different definitions of the problems.

Definitions of problems are framed to illustrate specific viewpoints of what the problem is. Goffman used the term frame in order to explain interpretations of occurrences. Frames can serve as explanations or guideposts to individual or collective action (Snow & Benford, 1988). Snow and Benford describe framing as an activity performed by social movements to express their viewpoints and “to assign meaning to and interpret relevant events and conditions in ways that are intended to mobilize potential adherents and constituents—to garner bystander support and demobilize antagonists” (p. 198).

By framing events in certain ways that assign meaning to them, actors can attempt to mobilize support and delegitimize opposing viewpoints. Because different frames may emerge surrounding the same problem, individuals may choose to adopt one or the other on the basis of the reliability of the frames. One factor in determining reliability is trust in the actors who present the frame. Constituents may mobilize around one frame because trust in that explanation and the organization that presents it is high (Robinson, 2009). This impacts how individuals interpret the seriousness of environmental problems and subsequently whether issues will be acted on and in what manner.

Social Construction and Social Movements

The framing process can serve to mobilize constituents for or against a particular cause. Mobilization against frames that are presented by actors emerges when the audience of the frame has low trust in the source of the frame. Social movement literature has acknowledged the emergence of mobilization over environmental issues where lack of trust is present. Examples include institutional recreancy, lack of trust in government agencies and officials, and the combination of the two (Brown & Mikkelsen, 1990; Cable & Cable, 1997; Freudenburg, 1993; Gaventa, 1980; Gibbs, 1982).

Charles Tilly provides a model for mobilization that bridges some of the ideological views of frame analysis with collective action and resource mobilization theory. Tilly’s (1978) definition of mobilization is “a process by which a group goes from a passive collection of individuals to an active participant in public life” (p. 69). A further extreme of this model is resource mobilization theory, which gives even less importance to ideological factors and, instead, emphasizes the need for available resources. The combination of ideologies, resources, and the power of frame presentation contribute to mobilization. Using this analytical framework, the emergence of environmental problems and mobilization around these problems can be better understood.

Environmental problems in communities provide a setting to further explore this connection. Community organizing around local problems has a long history in the United States. Many forms of community organizing exist. These have included writing and literacy circle newsletters in the late 19th and early 20th centuries, Saul Alinsky’s model of radical politics to create mass organizations to seize power and give it to the people (1971), and neighborhood block clubs. The goals to spread awareness, ensure social justice, and understand that city hall can be fought vary in scope and magnitude but have often proved to be effective models for organizing.

Citizen action in response to toxic waste at Love Canal has emerged as the premier example of community organizing over environmental issues. The story of neighborhood organizing and the quest for a clean, healthy environment is acknowledged in most major studies on environmental issues. The specifics of this case follow in a later section where the application of environmental issues is discussed.

Political Economy and the Environment

Theories of political economy of environmental issues focus on the development of political and economic practices and policies that contribute to environmental problems. Primarily, the focus has been on the creation of the capitalist mode of production that leads to overwhelming environmental destruction. Furthermore, the development of capitalism promotes a political environment that is friendly to more profitable, but less environmentally friendly, practices.

In addition to physical environmental realities that production processes cause, issues of health and economic injustice exist. Bryant and Mohai (1992) asked whether a safe environment is a civil right. They argue that people of color see environmental degradation interrelated with economic and political justice. This is the fundamental idea behind environmental justice in both action and theory. Another issue in environmental justice arises because people of color and lower income are less likely to have access to health insurance; thus, they become more ill if exposed to environmental hazards without means of treatment. Therefore, these populations share more of the negative environmental burden and have fewer resources to resolve the given problems.

The connection between health and economic justice is not a new relationship. Since World War II, there has been an increase in the development of the petrochemical industry. Coinciding with an increased demand for synthetic chemicals was an increased demand for disposal sites for waste byproducts of these chemicals. Many disposal sites were created in vacant plots of land, without the regulated disposal standards in place today. Expensive land used for the disposal sites of the 1940s and 1950s became the residential suburban developments of the 1960s, 1970s, and 1980s. With the post–World War II increase in population, many families were moving into suburban neighborhoods. Families felt safe from the problems of the cities, but they were not aware that many residential properties were built near the abandoned chemical waste sites of prior decades.

The problems of environmental contamination were first addressed publicly in Rachel Carson’s Silent Spring (1962). Her warning of chemical contaminants silencing biological life was not heeded at the time her book was published. These issues were not addressed until the 1970s with the first Earth Day in 1970, followed by the passing of numerous pieces of environmental protection legislation and the creation of the Environmental Protection Agency (EPA). Through this period of uncertainty, unclear scientific findings overwhelmed policymakers and the public, leading to confusion about how to develop environmental policies and actions.

Environmental Issues: Method and Application

Environmental problems have manifested most directly in the form of pollution. Evidence of environmental destruction is seen in the form of air, water, and land pollution that has a direct impact on the health of the human population. One of the most direct links between pollution and negative health effects has been identified since the creation of the petrochemical industry in the 1940s. Since this time, we have seen more cases of cancer and respiratory illness in the human population. The rate remains high even when controlling for mitigating factors, such as the effects of advanced medical technology in treating these illnesses, and lifestyle factors, such as diet and smoking. This case was made with the infamous discovery of toxic waste at Love Canal, New York, in 1978.

Literature in this area addresses the possible effects of exposure to toxins on one’s health. However, few studies have provided irrefutable evidence supporting the research hypothesis (association exists) or the null hypothesis (no association exists). Scientists know that chemicals can have adverse effects on the human condition when ingested, but they argue that some indirect exposures through air, soil, water, or residential habitation in proximity to such toxins have not provided similar consequences. The basic disagreement emerges in how one views risk, either through the precautionary principle or through risk assessment and evaluation. Proponents of the precautionary principle argue that if the chance of danger is present, then precaution should be used to avoid exposure. Risk assessment would argue the opposite—that the risk must be known before action is taken to avoid exposure. The difficulty is that science has not provided irrefutable evidence on the dangers of many chemical substances; therefore action for their removal from products and the environment has been slow. Recently, Devra Davis took on this phenomenon in The Secret History of the War on Cancer (2008). She outlined the lack of scientific responsibility in reporting findings connecting cancer and chemical exposure.

Most reports have not described exposures accurately, or they have failed to completely identify a causal factor (National Research Council, 1991). The Committee on Environmental Epidemiology was formed to assess the progress on hazardous waste assessment since the creation of Superfund and the Agency for Toxic Substance and Disease Registry. The committee concluded that no conclusive reports could be used to base policy on, because there are no measures in place to accurately depict exposure assessments. Their conclusions continue: There exists no comprehensive inventory of waste sites, no site discovery program, no minimum data set on human exposures, and no policy for immediate action if exposure exists (National Research Council, 1991). The report indicates that “the nation is not adequately identifying, assessing, or ranking hazardous-waste site exposures and their potential effects on human health” (p. 21).

Environmental toxins have long been thought to be causally related to the incidence of disease. Air pollution, specifically with carbon dioxide and sulfur dioxide, has been studied in association with asthma and pulmonary disorders (Carnow, Lepper, Shekelle, & Stamler, 1969). Water pollution, particularly with trichloroethylene and tetrachloroethylene, sparked a concern about childhood and adult leukemia in Woburn, Massachusetts (Brown & Mikkelsen, 1990). Similarly, numerous studies have been conducted that investigate the exposure-ailment connection (Landrigan, 1990; Neutra, Lipscomb, Satin, & Shusterman, 1991; Paigen, Goldman, Mougnant, Highland, & Steegman, 1987). These studies use descriptive and case-control methods and field investigations consisting of surveys and physical examinations, resulting in quantitative analyses in order to test hypotheses.

Descriptive studies portray disease patterns in populations according to person, place, and time, and they include time-series analyses (National Research Council, 1991). For example, a study performed by the National Cancer Institute used maps of cancer incidences and toxic waste sites, concluding that the high incidence of bladder cancer in northwestern Illinois counties was significant and leading to the implementation of an incidence study using survey methods (National Research Council, 1991).

A cohort study was employed with North Carolina residents who consumed raw polluted river water contaminated by an industrial site from 1947 to 1976. Residents’ rates of all forms of cancer were more than twice those expected in the general population (National Research Council, 1991). Once exposure ceased, rates returned to the expected level, adjusting for latency.

The epidemiologic case-control study carried out in Woburn, Massachusetts, yielded an association between leukemia and drinking from contaminated wells. The EPA could not pinpoint the source of contamination; therefore, it could not infer conclusively that the cases of leukemia were due to the proximity of a hazardous waste site (Lagakos, Wessen, & Lelen, 1986).

Griffith, Duncan, Riggan, and Pellom (1989) analyzed EPA and cancer mortality data from 13 U.S. sites where there were major incidences of cancer between 1970 and 1979. They found evidence that contaminated ground water was used for human consumption at 593 waste sites in 339 U.S. counties in 49 states. Significant associations were found between several cancers and exposure to contaminated water in white males; these included cancers of the lung, bladder, esophagus, stomach, large intestine, and rectum (Griffith et al., 1989). Higher incidences of cancers of the lung, bladder, breast, stomach, large intestine, and rectum were found in white females in these counties (Griffith et al., 1989), when compared with females in counties that did not have hazardous waste sites. However, this study has been criticized based on its use of populationbased incidences of cancer rather than individual-level estimates. Researchers inferred that proximity to hazardous waste sites caused cancer.

Wong, Morgan, Whorton, Gordon, and Kheifets (1989) performed an ecologic and case-control analysis to evaluate whether there was an association between groundwater contamination with dibromochloropropane (DBCP) and mortality from gastric cancer and leukemia. The only positive association that was found was in farm workers. No relationship was found for gastric cancer or leukemia with DBCP contamination of drinking water.

Neutra et al. (1991) found that individuals living near toxic waste sites had one or more bothersome symptoms that those living in control areas did not have. However, rates of cancer and birth defects were not found to be statistically significantly different for these individuals than for those in the control neighborhoods. Symptoms such as worrying, depression, and nervousness were more likely to be the result of knowledge of the site and its contaminants than the result of chemical exposure. Although some practitioners argue that residents near these sites do show higher incidences of asthma and psychological disturbances than individuals in control groups, the findings remain highly controversial (Neutra et al., 1991).

For the most part, these studies consist of survey and field investigation methodologies, relying on self-report methods. One problem with explaining associations that rely on self-report methods is that if residents want to be relocated or have other agendas, then the degree to which symptoms are reported may increase. Many residents felt that this was what some homeowners were hoping for at Love Canal. This remains one of the most critical problems with state and federal agency studies that seek to provide evidence of community risk.

With the increase in studies in this area, the public has been partially reassured by having the knowledge that at least concerns are being recognized. Specifically, cancer rates are still high, but the fear of human-made chemicals has largely been dispelled. Most recently, the organic food movement has been gaining legitimacy. Yet, many still doubt the health benefits behind this movement. Studies concerning environmental racism have been more prevalent, focusing on the incidence of lower-income, nonwhite families living near toxic waste sites. This focus has taken attention away from specific health problems. Instead, the focus has been on issues of political economy and equity. This is not a criticism of environmental justice but rather a call for the convergence of natural science and sociology in order to address both issues. Other variables to be considered in these studies may include racial composition of counties, social class of counties, concentration of low-income occupations in counties, new housing starts in counties, and the percentage of welfare recipients per county.

Risk Perception and Environmental Health

The uncertainty of science had created cross-discipline dialogue. Social scientists have addressed environmental issues in studies of risk assessment, disaster relief (both natural and technological), toxic exposure, and other datadriven areas. Because of the risk of chemical exposure due to toxic waste, landfills emerged as one of the most imminent public health threats with the discovery of Love Canal. However, even in cases where studies to show an association between illness and exposure to toxic chemicals have been inconclusive, the message has been that these chemicals cause cancer and needed to be eradicated.

An important role of science is to inform the public of findings, usually through the media. Epidemiologic studies deal with human populations and are often questioned based on the legitimacy of the data and the willingness of the agency or corporation funding the research to share findings with the public. These studies are also usually based on relatively small populations and a small number of events; this results in a lack of significant findings, because sample sizes are too small to generate statistically reliable conclusions. Researchers are asked to report conclusions to various interest groups that may have a stake in the research problem. The pressure of the public arena and media, with emerging concerns and consequences for public health and the environment, has led to a decrease in the willingness to share data and be criticized if the data do not fit the public agenda. Politics and public perception surpass what science is able to provide. Science’s inability to prove negatives has led to public policy that tries to control what cannot be established. This uncertainty shapes policy to err on the side of protection; yet in many communities the risks are endured regardless.

Findings often snowball into hard line conclusions and the perception of a problem when one may not exist, or vice versa. Risk perception and the realization of risks are two different things. Risk perception may encompass what one believes might occur or an understanding based on secondary information. Risk realization occurs when one is physically affected by the agent or situation and a decision to act is based on that encounter. The problem arises in this discrepancy. Perception is what people perceive to be happening. With different information from different scientific experts, the public is left to decide on their own who or what is right, based on the health and well-being of themselves and their families.

Freudenburg (1993) discussed the concept of risk and recreancy in public decision making. He argues that an increase in institutional responsibility for risk management has created a system where responsibilities are often overlooked. This concept proposes increased frequency in institutional decision making in risk analysis. Freudenburg (1993) coined the term recreancy to identify the institutional failure to follow through on a duty or responsibility or broadly expected obligations to the collective. Questions are now raised by individuals deciphering scientific studies for themselves, but they now question the role of institutional actors. Without correlational data from an alternative institutional source that they trust, citizens do not know where to turn for clear answers about data regarding environmental toxins.

Community-based studies by community organizers have emerged in an attempt to address the failure of institutions to provide real, understandable answers regarding human health and exposure rates. Specifically, recent literature calls for more involvement of the scientific community in the decision-making process. A resurgence of popular epidemiology, since Lois Gibbs’s attempt in 1978– 1979, has found individuals using lay methods to determine association. Even if they don’t result in strong, scientific evidence, community-based studies at least provide the groundwork and show a need for more in-depth studies. Brown and Mikkelsen’s 1990 study is a strong example of this method. The question of whether there was a connection between childhood leukemia and known contaminated well water divided the community, but it forced epidemiologic studies.

Coinciding with these revelations, other studies were being conducted that attempted to link other contaminated sites with adverse health effects. As Gots (1993) stated, most were laboratory studies in simulated environments. Examples of human studies existed only in the sociological and epidemiological literature (Brown & Mikkelsen, 1990; Gibbs, 1982; Landrigan, 1990; Neutra et al., 1991). Incidences of chemical scares were also prevalent. Headlines concerning the dioxin scare at Times Beach, Missouri; contamination of apple crops with the synthetic growth regulator Alar; and use of Agent Orange created the fear that human-made chemicals cause disease. Evidence existed that these specific chemicals may cause health problems in humans, but data on the incidence of illness relative to exposure and on synergistic effects of these chemicals were missing. Furthermore, there was even less information available about other potential threats to health, such as airborne and waterborne contaminants, environmental sensitivity disorders, and living in proximity to hazardous waste sites. To establish a causal relationship between exposure and chemicals, obtaining valid measures and estimates for exposure is essential.

Environmental Movements

Contaminated Communities; The Challenge of Social Control; Environmental Problems as Conflicts of Interests; Disasters, Collective Behavior, and Social Organization; Love Canal: Science, Politics, People, and Power; and Powerlessness are just a few of the book titles that describe the scope and emergence of the mobilization surrounding environmental problems. Since the publication of Silent Spring, the struggle to define, understand, and resolve environmental problems has inundated environmental literature as well as the agendas of environmental organizations at both the national and local levels.

The environmental movement in the United States can be traced back to the early conservationists at the turn of the 20th century, whose focus was on control of natural resources for technological and societal use. Accompanying this was a movement toward the preservation of the natural environment simply for nature’s sake and separate from any use and/or value that human society had placed upon it.

The contemporary environmental movement embraced both of these traditions while focusing on building a political alliance to ensure the passage of legislation that would protect both nature and human health. As evidenced by the multitude of legislative victories the environmental movement claimed during the 1970s, the environmental movement was gaining prominence as one of the most successful efforts of social movement organizers.

Politically, momentum began to shift back toward the wise-use movement throughout the 1980s. Environmental problems were framed in opposition to capitalist goals. Politicians took an either/or stance: jobs or the environment. With one’s economic livelihood seemingly at stake, it is no wonder that concern for the environment was diminished in the public agenda. The environmental health movement is arguably one area that continued to keep environmental issues in the public’s consciousness. One of the classic and influential cases in environmental organizing, Love Canal, illustrates the interconnectedness of politics, science, and the environment.

Mobilization Around Toxic Waste Sites: Love Canal

To understand the factors contributing to the emergence, awareness, and mobilization around environmental problems, the scope and focus of the problem must be considered. This analysis focuses on the emergence of and mobilization around toxic waste sites found in residential communities. Literature addressing toxic waste sites in communities place Love Canal, New York, as the first community to encounter such a problem that received national media attention. Although community protests were occurring around the toxics issue as early as 1970, no other site received the same degree of national media attention (Szasz, 1994).

In 1978, Love Canal was declared a federal disaster area, but the final homeowner evacuation was voluntary, not mandatory, even though the state had said a health emergency may exist. Given the possibility of ill-health effects, residents were given the choice about whether to stay or move. Because of the lack of strong correlational evidence, public health officials were not able to substantiate a link between exposure to chemicals and disease (Robinson, 2002).

The questionable contaminated area was evacuated and became known as the Emergency Declaration Area (EDA). It was divided into seven sampling areas. Two studies were performed to assess the habitability and safety of the area. The first study was completed in 1982 by the New York State Department of Health (DOH), the EPA, and the U.S. Department of Health and Human Services. Problems arose about the study’s conclusion, which was that the EDA was as habitable as comparable control areas. The Congressional Office of Technology Assessment found that the study lacked information to determine whether unsafe levels of contamination existed and that it did not make clear what next steps should be taken. Thereafter, DOH and EPA conducted a second study on habitability; it was released in 1988. Habitability and safety have been studied in regard to numerous hazardous waste sites, but actual rates of illness have not been linked to exposure to toxic substances from nearby chemical waste sites.

The Superfund Act, passed in 1980, was written specifically in response to the known hazardous waste site at Love Canal. Policymakers recognized that industry used land-based disposal methods, that industrial sites were contaminated, and that an increase in clean air and water standards led to a decrease in land-based regulated disposal (Barnett, 1994). The problem was that there was neither an informed way of counting or tracking these sites, nor evidence of an adverse ecosystem and human effects (Barnett, 1994).

Since Love Canal, no other neighborhood has received the same degree of attention, although many have encountered toxic waste contaminants in their communities (Brown & Mikkelsen, 1990; Bryant & Mohai, 1992; Cable, Walsh, & Warland, 1988). No conclusive, significant correlation between chemicals and cancer has been found at Love Canal or at the other identified exposure sites. Nor has any truly verifiable evidence been found that exposure to, and living near, any other toxic waste site causes disease, though disorders have been loosely associated with chemical exposure, such as asthma, respiratory disease, nerve damage, miscarriages, and cancer.

People living near these sites must often decide on how much they want to expose themselves to risk. Once the presence of a waste site is known, they must decide, without data to guide their decisions, whether to stay in their homes or leave. This has historically interfered with the availability and collection of valid data. When a study is conducted, residents request to be informed of the results and progress of the study. Because most epidemiological studies require longitudinal or cohort analysis in order to be reliable and valid, it is advantageous to have a stable, nonmobile population. This begs ethical questions, on behalf of the researchers, to disclose data relating to exposure before the study is completed. Researchers cannot both verify exposure findings and expect residents to remain so that they can carry out the remainder of the study. Thus, individuals, families, and communities are asked to base their decisions on claims that cannot be substantiated one way or the other.

Toxic waste sites continue to be discovered in communities. In many cases, the resulting community struggles are extended battles. The operative phrase in many cases is “once a site is discovered.” The chemicals in Love Canal were buried 30 years before it was known to the community that their houses, school, and playground were built on top of and surrounding a chemical site containing 22,000 tons of waste. This is not to say that the problem didn’t exist before its discovery by residents; it just wasn’t defined as a problem. From the time the chemicals were buried to the discovery of the site by residents 30 years later, residents noticed dogs with burned noses, children with skin rashes, and increased rates of miscarriages, leukemia, and nerve and respiratory disorders. But they were not aware that these rates were out of the ordinary. The effects of the problem did not change, but the way the problem was represented did. The shift was in an awareness of the existence of the problem.

In addition to the chemical disaster at Love Canal, other environmental issues have been the subject of various social movement activities, as well as political legislation. In each instance, public perception influences how and whether the problem is acted on by those with the power to make a difference.

Conclusion

Culturally and socially, environmental problems represent problems of social organization, communication, and socialization. Social scientists can look toward the phenomenon, visible in the reaction to environmental problems, to begin making sense of culture and society at large. Our understanding of environmental issues as primarily social constructions offers insight into how these issues are created, maintained, and resolved.

For example, in many cases where chemical contamination is the focal issue of community groups, the level of risk is perceived by affected individuals rather than established by science. It is the social processes in a community that lead to risk determination, not the natural science interpretations of an issue. Individuals have been socialized to trust science for valid information. When the determination of risk is uncertain, individuals are left to determine the level of risk for themselves by other means. In most cases, this determination is made through contact with state or federal government officials, through collaboration with other community members, or through other sources of information, such as the media. This framework helps to explain disagreements over the seriousness of most environmental issues, from global climate change to mountain-top coal removal.

The subjective reality of environmental problems becomes visible in terms of how the issue is circulated in cultural discourse. Each stakeholder constructs different means of projecting information for public consumption. When presented in the media, the perception is that information is true and accurate. Most often the determination of risk takes place in the form of a public meeting. In this situation, public officials are in control of the meeting, drawing on public anticipation surrounding the specific issue and information to be released. At Love Canal, for example, officials kept the information to be discussed at the meeting private until the meeting in order to build anticipation and increase their power over the dissemination of information.

At both the cultural and social level, power is maintained through these exercises. Often, the state controls the dissemination of information that individuals perceive to be true and accurate. However, different modes of collaboration among community members can create a different means of risk determination. The sharing of common experiences among community residents can lead to a broader sense of mobilization. Once commonalties are recognized, residents begin to determine their own level of risk. Risk perception is based on the potential danger of a problem. The sources that individuals base their information and understanding on are numerous. Each source has developed a frame of events and information on which they base their version of reality. Whether from the media, science, the state, or local knowledge, such frames serve as a means to display a problem in terms of a specific group. Social movement development, in relation to the environment, offers a powerful tool for individuals looking to construct the frame of a given environmental reality.

The ways in which environmental realities have been constructed influences how they will be acted on socially, culturally, and politically. Cultural discourse then circulates in the public sphere and becomes normative. Environmental issues become part of the public dialogue. This dialogue serves to help develop an understanding about the factors that coalesce to create, maintain, and resolve social processes that influence environmental problems.

Community-level interaction is an interesting social space from which to witness environmental understanding. Community-based, environmental problems affect individuals in many ways. Some communities mobilize and form environmental organizations to address a specific problem. Others, with existing community organizations, add environmental problems to their agenda. Environmental problems can vary in scope, size, and duration.

Mobilization in these communities may occur due to individuals’ fear that nothing is being done to ensure the safety of their children and families. It may also occur on the basis of frustration and an inability to understand what and why this is happening in their community. In addition, community groups often mobilize as a result of a lack of trust in government. The mobilization of individuals to resist the state’s discourse challenges the power of the state. The level of trust in government is a key factor in determining the level of power the state can maintain during the presentation of its frame. For example, if trust in government is low, then a stronger frame needs to be developed to legitimize the government’s position. Government often emerges as the key stakeholder, as the actor that will have the power to create change.

Previous research addresses the state’s desire to maintain legitimacy at the same time that community groups seek to resist state discourse. Admitting that there is a problem shows that the state is capable of mistakes, and thus, the state’s legitimacy can be questioned and it is vulnerable. The goal in the rhetoric of the state is not to raise questions, thereby maintaining legitimacy.

Most environmental problems are categorized by place: global, local, or national. These categories are not mutually exclusive. For example, ozone depletion is a global problem because of the total atmospheric effects the ozone layer has on the biosphere from ultraviolet rays. Yet the problem can be seen as being local in an area where heavy smog is causing ozone depletion and high surface area ozone levels, such as in a highly urban area like Los Angeles.

Similarly, the discovery of toxic waste sites across the United States can be seen as a national problem. But in the specific communities where these sites are discovered, it is a local problem affecting individuals directly. The problem is no longer seen as away from them; it is now part of their community. This developing framework of environmental issues has helped individuals become aware of the multitude of impacts that these problems have. Social scientists have been able to develop an understanding of the environment that moves away from the depiction of the earth as something separate from human society, but, instead, the earth is a system with interrelated consequences and realities. One of the most vivid paradigm shifts has been the movement away from an anthropocentric worldview and toward an environmental worldview. This shift can be represented in the movement from the human environmental paradigm (HEP) to the new environmental paradigm (NEP).

Social scientists focus on this shift as a way to explain a cultural movement that has embraced a way of understanding the impact that society has on the environment. Arguably, once the NEP is part of the natural discourse of environmental issues, they become more easily recognized as problems that have risen from a system out of balance. This approach focuses on sustainable development and other modes of development that provide environmentally sensitive growth models. These efforts move toward a culture that is sensitive to a responsibility that ensures less devastating environmental impact in the future. As environmental sociologists and other environmental researchers seek answers for a sustainable society, we must consider the devastating impacts of our current modes of production. New modes of production that take into consideration innovative, green energy solutions will provide a stronger sustainable economy and environment for culture and society.

Bibliography:

  1. Alinsky, S. (1971). Rules for radicals. New York: Random House.
  2. Barnett, H. G. (1994). Toxic debts and the superfund dilemma. Chapel Hill: University of North Carolina Press.
  3. Bell, M. (2008). Invitation to environmental sociology (3rd ed.). Thousand Oaks, CA: Pine Forge Press.
  4. Brown, P., & Mikkelsen, E. (1990). No safe place: Toxic waste, leukemia and community action. Berkeley: University of California Press.
  5. Bryant, B., & Mohai, P. (Eds.). (1992). Race and the incidence of environmental hazards: A time for discourse. Boulder, CO: Westview Press.
  6. Cable, S., & Cable, C. (1997). Environmental problems, grassroots solutions: The politics of grassroots environmental conflict. New York: St. Martin’s Press.
  7. Cable, S., Walsh, E., & Warland, R. (1988). Differential paths to political activism: Comparison of four mobilization processes after the Three Mile Island accident. Social Forces, 66, 951–969.
  8. Carnow, B. W., Lepper, M. H., Shekelle, R. B., & Stamler, J. (1969). Chicago air pollution study: SO2 levels and acute illness in patients with chronic bronchiopulmonary disease. Archives of Environmental Health, 18, 768–776.
  9. Carson, R. (1962). Silent spring. Boston: Houghton Mifflin.
  10. Cylke, F. K. (1993). The environment. New York: HarperCollins.
  11. Davis, D. (2008). The secret history of the war on cancer. New York: Basic Books.
  12. Dunlap, R., & Mertig, A. (1992). The evolution of the U.S. environmental movement from 1970 to 1990: An overview. London: Taylor & Francis.
  13. Freudenburg, W. (1993). Risk and recreancy: Weber, the division of labor, and the rationality of risk perceptions. Social Forces, 71(4), 909–932.
  14. Gaventa, J. (1980). Power and powerlessness: Quiescence and rebellion in an Appalachian Valley. Urbana: University of Illinois Press.
  15. Gibbs, L. (1982). Love Canal: My story. Albany, NY: SUNY Press.
  16. Gore, A., Jr. (2006). An inconvenient truth: The planetary emergency of global warming and what we can do about it. Emmaus, NY: Rodale Press.
  17. Gots, R. E. (1993). Toxic risks: Science regulation and perception. Boca Raton, FL: Lewis.
  18. Gould, K. A., Pellow, D., & Schnaiberg, A. (2008). The treadmill of production: Injustice and unsustainability in the global economy. Boulder, CO: Paradigm.
  19. Griffith, J. R. C., Duncan, R. C., Riggan, W. B., & Pellom, A. C. (1989). Cancer mortality in U.S. counties with hazardous waste sites and ground water pollution. Archives of Environmental Health, 44, 69–74.
  20. Hannigan, J. (1995). Environmental sociology: A social constructionist perspective. London: Routledge.
  21. Kennedy, R. F., Jr. (2004). Crimes against nature: How George Bush and his corporate pals are plundering the country and hijacking our democracy. New York: HarperCollins.
  22. Kettel, B. (1996). Women, health and the environment. Social Science & Medicine, 42, 1367–1379.
  23. Lagakos, S. W., Wessen, B., & Lelen, M. (1986). Contaminated well water and health effects in Woburn, Massachusetts. Journal of the American Statistical Association, 81, 583–614.
  24. Landrigan, P. J. (1990). Prevention of toxic environmental illness in the twenty-first century. Environmental Health Perspectives, 86, 197–199.
  25. Landrigan, P. J. (1992). Commentary: Environmental disease— A preventable epidemic. American Journal of Public Health, 82, 941–943.
  26. Levine, A. (1982). Love Canal: Science, politics, people. Lexington, MA: D. C. Heath.
  27. Lipscomb, J. A., Goldman, L. R., Satin, K. P., Smith, D. F., Vance, W., & Neutra, R. (1991). A follow-up study of the community near the McColl Waste Disposal Site. Environmental Health Perspectives, 94, 15–24.
  28. National Research Council. (1991). Environmental epidemiology: Public health and hazardous wastes. Washington, DC: National Academy Press.
  29. Neutra, R., Lipscomb, J., Satin, K., & Shusterman, D. (1991). Hypotheses to explain the higher symptom rates observed around hazardous waste sites. Environmental Health Perspectives, 94, 31–38.
  30. Paigen, B., Goldman, L., Mougnant, M., Highland, J., & Steegman, A. T. (1987). Growth of children living near the hazardous waste site, Love Canal. Human Biology, 59, 489–508.
  31. Robinson, E. (2002). Community frame analysis in Love Canal: Understanding messages in a contaminated community. Sociological Spectrum, 22, 139–169.
  32. Robinson, E. (2009). Competing frames of environmental contamination: Influences on grassroots mobilization. Sociological Spectrum, 29, 3–27.
  33. Sarbin, T., & Kitsuse, J. (1994). Constructing the social. London: Sage.
  34. Snow, D., & Benford, R. D. (1988). Ideology, frame resonance and participant mobilization. International Social Movement Research, 1, 197–217.
  35. Steingraber, S. (2001). Having faith: An ecologist’s journey to motherhood. Cambridge, MA: Perseus.
  36. Szasz, A. (1994). Ecopopulism: Toxic waste and the movement for environmental justice. Minneapolis: University of Minnesota Press.
  37. Tilly, C. (1978). From mobilization to revolution. New York: McGraw-Hill.
  38. Townsend, P. (2009). Environmental anthropology: From pigs to policies (2nd ed.). Long Grove, IL: Waveland Press.
  39. Wong, O., Morgan, R. W., Whorton, M. D., Gordon, N., & Kheifets, L. (1989). Ecological analysis and case-control studies of gastric cancer and leukemia in relation to DBCP in drinking water in Fresno County, California. British Journal of Independent Medicine, 46, 521–528.

Browse more research papers on environmental issues:

ORDER HIGH QUALITY CUSTOM PAPER


Always on-time

Plagiarism-Free

100% Confidentiality
Special offer! Get discount 10% for the first order. Promo code: cd1a428655